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Diagonal tensor flux approximations are commonly used in fluid dynamics. This
approximation introduces an O(1) error in flux whenever the coordinate system is
nonaligned with the principal axes of the tensor which is particularly common when
employing curvilinear gridding. In general a consistent full tensor flux approximation
leads to a significant increase in support and consequent size of the Jacobian matrix.
After decomposition of a general full tensor flux into a diagonal tensor flux together
with cross terms, time-split semi-implicit, stable, full tensor flux approximations are
introduced with in a general finite volume formalism, enabling the standard diagonal
tensor Jacobian matrix structure to be retained for single phase flow, IMPES, and
standard block fully implicit formulations while ensuring spatial consistency of the
discretization for both structured and unstructured grids. Stability of the scheme
is proven for constant elliptic coefficients. The results presented demonstrate the
benefits of the method for multiphase flow within a fully implicit framework on
structured and unstructured grids.c© 2000 Academic Press
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1. INTRODUCTION

Diagonally dominant M-matrices are obtained for the most common and fundamental
discrete operators that occur in numerical approximation of partial differential equations.
Classical examples result from the use of first-order upwind schemes for hyperbolic systems
and standard five-point schemes (in 2-D, 7 in 3-D) that are used for approximation of
Laplacian and diagonal tensor diffusion operators; e.g., [1, 2]. Approximation of full tensor
operators introduces additional cross terms that cause the support of the scheme (and thus
the matrix bandwidth) to be increased while unconditional diagonal dominance is reduced
to being at best conditional or completely lost [3].
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Perhaps the most common example of a full tensor in fluid dynamics is due to the use of
nonorthogonal and/or unstructured grids, which cause off-diagonal terms to appear in the
flow equations. For example, when discretizing systems of equations that describe flow in
porous media, which is the main focus of this paper, or incompressible Euler and Navier–
Stokes equations, the support of a full tensor pressure equation typically increases above
that of the standard scheme on a logical Cartesian grid from 5 to 9 nodes in 2-D and from 7 to
19 or 27 nodes in 3-D, and therefore represents a potentially large increase in computational
cost, as the pressure field is recalculated at every time step of the flow calculation.

Full tensor approximation is a particularly important issue for flow in porous media
[3–20]. A major assumption in most commercial simulators is that the flux depends on a
diagonal tensor and that the consequent discretizations employ minimal five- and seven-
node operators. The design and efficiency of such codes are intrinsically linked to the
diagonal tensor assumption. However, this assumption is true only if the computational
grid is aligned with the principal axes of the tensor.

In general a full tensor arises in reservoir simulation whenever (a) the medium is
anisotropic and the local frame of reference is nonaligned with the principal axes [23],
(b) nonorthogonal and/or unstructured grids are employed [3–19], and (c) fine scale cross-
flow upscaling is performed, particularly for cross-bedding [21]. Consequently all diagonal
tensor simulators will suffer from inconsistent O(1) errors in flux [4, 7, 10–12] when applied
to cases involving these major features. In particular, while these simulators appear to allow
for nonorthogonal grids through the definition of corner point geometry, only the diagonal
tensor flux permeability–geometry contribution is included, which leads to an O(1) error in
flux (even for Laplaces equation) on a nonorthogonal grid [7].

The focus of this paper is on the development of finite volume schemes that employ
spatially consistent full tensor fluxes while retaining standard diagonal tensor matrix or
reduced Jacobian matrix inversion.

The flow equations are given in Sections 2 and 3. In Section 4 it is shown that each of the
full tensor fluxes as defined by the schemes presented in [3–8, 10–17] in a block-centered,
point-distributed, or cellwise constant coefficient finite volume context can be decomposed
into a two-point diagonal tensor flux with a coefficient that is defined via a consistent
factorization of the scheme together with cross terms. It is also shown that the fluxes of the
formulations can be expressed in an analogous discrete form; this observation is exploited
in Sections 6 and 7, where the simpler cellwise constant coefficient schemes are used to
contrast the effects of matrix splitting and flux splitting on discrete error, conservation, and
stability.

The conditions required for a full tensor discretization to generate an M-matrix are
summarized in Section 5. Split schemes are first considered at the matrix level in Section 6,
and the properties of the resulting preconditioning techniques are noted.

Semi-implicit split fluxes are defined for each type of finite volume scheme in Section 7.
The split fluxes are composed of a fully implicit two-point diagonal tensor flux together
with explicit cross-flow terms. The resulting split flux generalizes the deferred correction
IMPES type schemes of [7] to asemi-implicitgeneral scheme framework, enabling full
tensor operators to be incorporated in astandard fully implicit formulationwhile retaining
the standard block Jacobian two-point flux matrix and thus resulting in gains in efficiency
while only requiring minimal code changes. An error analysis demonstrates that semi-
implicit flux splitting formally introduces an error of order1t , which is confirmed in a
convergence study. A stability analysis is also presented for the case of the split single-phase
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pressure equation and demonstrates unconditional stability for spatially constant elliptic
coefficients.

The split flux schemes are extended to triangular grids in Section 8, generalizing the
split schemes to both structured and generally unstructured grids composed of quadrilateral
and/or triangular grid cells.

The semi-implicit schemes are applied to a number of porous media two phase flow
problems in Section 9, involving strong cross flow due to the orientation of the grid relative to
the problem; benefits of the method are clearly demonstrated for structured and unstructured
grids while the large time step advantages of a fully implicit formulation are maintained.

2. THE FLOW EQUATIONS

Reservoir simulation and (environmental) aquifer remediation involve solving a coupled
system of essentially hyperbolic conservation laws (for fluid transport) and an elliptic or
parabolic equation for the pressure. The coupling between the equations is via the fluid
velocity, which is defined by Darcy’s law to be proportional to the pressure gradient.

Without loss of generality in terms of the numerical method’s applicability, the schemes
presented here are illustrated with respect to simplified two-phase incompressible flow
models, with unit porosity, and where gravity, capillary pressure, and diffusion are neglected.
The continuity equation for each phasej = 1, . . . , Np (hereNp= 2) is written as∫

Ä

(
∂sj

∂t
+∇ · v j

)
dτ = mj (x, y), (2.1)

where the integral is taken over domainÄ and∇ = (∂x, ∂y) . The j th phase saturationsj

is defined by the ratio of phase volumeτ j to pore volumeτpv with sj = τ j /τpv, andmj can
be a specified phase flux. Since the pore volume must always be filled by the fluids present,
this gives rise to the volume balance

Np∑
j=1

sj = 1. (2.2)

The momentum equations are defined through Darcy’s law, where

v j =−λ j K∇8 (2.3)

is the j th phase velocity,K can be afull rock permeability tensor,8 is the pressure, and
the j th phase mobility is given by

λ j = kr j (sj )/µ j , (2.4)

whereµ j andkr j are the respective phase viscosity and relative permeability. An equation
for pressure can be derived by summation of Eq. (2.1) over the phases and using (2.2) to give∫

Ä

(∇ ·VT ) dτ =
∫
Ä

−∇ ·
K

Np∑
j=1

λ j∇8
 dτ =

Np∑
j=1

mj =m(x, y), (2.5)

whereVT is the total sum of phase velocities andm is the net flux. Neumann boundary
conditions apply on boundary∂Ä and require zero flux on solid walls together with reflec-
tion conditions for saturations s. Inflow–outflow conditions apply at wells where fluxes are
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prescribed together with Dirichlet conditions for s, and pressure must be specified at least
at one point. Initial data in terms of saturation/concentration and pressure fields are also
prescribed. Further details can be found in [1].

3. GENERAL ELLIPTIC TENSOR EQUATION

We shall temporarily consider the single-phase pressure equation (variant of Eq. (2.5))
expressed as

−
∫
Ä

∇ · (K∇8) dτ =m(x, y). (3.1)

The matrixK can be a diagonal or full Cartesian tensor with the general form

K =
(

Kαα Kαβ

Kαβ Kββ

)
, (3.2)

where off-diagonal Cartesian terms can be due to cross-bedding and/or upscaling [21]. The
tensorK(x, y) can be discontinuous across internal boundaries ofÄ, and the full tensor
pressure equation is assumed to be elliptic such thatK 2

αβ ≤ KααKββ .
In this work the pressure equation is defined in a general curvilinear coordinate system

defined with respect to a uniform dimensionless transform space(ξ, η). For an arbitrary
control volumeÄC with boundary∂ÄC and surfaces that are tangential to constant(ξ, η)

(replacingÄ with ÄC), Eq. (3.1) is integrated overÄC via the Gauss flux theorem to yield

1ξ F +1ηG=m(x, y), (3.3)

where1ξ F and1ηG are the respective differences in net flux with respect to(ξ, η).
Resolving the components of velocity along the unit normals to the curvilinear coordinates
(ξ, η) gives rise to the general tensor flux components

F =−
∫
δÄC

(Taa8ξ + Tab8η) dη, G=−
∫
δÄC

(Tab8ξ + Tbb8η) dξ, (3.4)

where the general tensorT has canonical coefficients defined by

Taa =
(
Kααy2

η + Kββx2
η − 2Kαβxηyη

)/
J

Tbb =
(
Kααy2

ξ + Kββx2
ξ − 2Kαβxξ yξ

)/
J (3.5)

Tab = (Kαβ(xξ yη+ xηyξ )− (Kααyξ yη+ Kββxξ xη))/J

andJ(x, y)= xξ yη− xηyξ . Thus any scheme applicable to a full tensor also applies to any
curvilinear grid independent of the grid orthogonality. Ellipticity ofT follows from elliptic-
ity of Eq. (3.2), and by Eq. (3.5) even a diagonal anisotropic cartesian tensor also leads to a
full tensor on a curvilinearorthogonalgrid. The general tensorT expresses a certain duality
between the geometry and permeability, with geometry and physical space Cartesian per-
meability combined into a general tensor that can be viewed as a transformed permeability
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FIG. 1. Dual variable scheme, control volume, and flux calculation. Cell vertex flow variable, cellwise constant
tensor (shaded). (a) Dashed line, surface of control volumei, j . (b) Cellwise flux locationsN, S, E,W.

with respect to a uniform (Cartesian) grid. For example, upscaling can be performed with
respect to the general tensor [16], which shows that geometry and permeability effects can
be treated in an equivalent fashion.

4. FINITE VOLUME FORMULATIONS

The finite volume schemes considered in this work are either

(a) dual variable cell vertex based with flow variables located at cell vertices while
the rock permeability tensor is piecewise constant over each cell (Fig. 1) or

(b) control-volume distributed such that flow variables and rock properties, e.g., rock
permeability tensor, share the same location within the control volume (Fig. 2; the shading
indicates constant permeability); this includes both the traditional cell-centered scheme
where the control volume is taken to be the grid cell and flow and rock variables are located
at the cell center (velocity is cell face centered), and point distributed (i.e., vertex centered)

FIG. 2. Control volume distributed scheme, control volume, and flux calculation. Cell vertex flow variable,
constant tensor per control volume (shaded). (a) Dashed line, surface of control volumei, j . (b) Cellwise fluxes
N, S, E,W. (c) Subcell triangle basis for flux continuity.
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such that flow variables and the rock permeability tensor are located at cell vertices and are
piecewise constant over each cell vertex control volume.

In this section it is shown that the fluxes resulting from the two formulations can be
expressed in an analogous discrete form and that each flux can be decomposed into a
leading diagonal tensor two-point operator with a coefficient that is defined via a consistent
factorization of the scheme together with cross terms.

While the focus here is on cell vertex/point-distributed schemes, the methods presented
have also been developed for cell-centered formulations by translating the operations onto
a grid that is essentially the dual mesh.

To fix ideas, finite volume discretizations will be defined with respect to grid vertex
control volumes. For vertexi, j the control volume is defined by joining cell centers to
the cell edge midpoints of those edges that are attached to the(i, j )th vertex (Figs. 1b
and 2b) and as a result, each quadrilateral is subdivided into four quadrants, with each
quadrant forming part of the control volume associated with the corresponding cell vertex;
consequently, each control volume is generally composed of a polygon.

In the two types of discretization considered, the flow variables are always located at the
grid vertices, and the fluxes are assembled in a cellwise fashion. For a given cell, a flux is
calculated along the normal to each control volume face inside the cell (Figs. 1b and 2b),
leading to the four fluxes

FNi+1/2, j+1/2, FSi+1/2, j+1/2, FEi+1/2, j+1/2, FWi+1/2, j+1/2 (4.1)

per quadrilateral, where suffixesN, S, E,W indicate the north, south, east, and west quadra-
ture locations. The fluxes are distributed to their adjacent cell edges, which are intersected
by the control volume faces. In 2-D each cell edge is intersected by one (if a boundary) or
two control volume faces. In this way the finite volume scheme is assembled via summation
of net edge-based fluxes,

Fi+1/2, j = FNi+1/2, j−1/2 + FSi+1/2, j+1/2, Fi, j+1/2= FEi−1/2, j+1/2 + FWi+1/2, j+1/2. (4.2)

Finally, the discrete scheme for single phase flow is completed by using Eq. (4.2) to define
the closed integral of net (Gaussian) flux over the control volume(i, j ), which results in

Fi+1/2, j− Fi−1/2, j + Fi, j+1/2− Fi, j−1/2=m. (4.3)

Flux for Dual Variable Location

If permeability assumes a cellwise constant distribution and flow variables are defined
with respect to cell vertices (Fig. 1), then flux and pressure continuity across a control
volume interface is immediately satisfied since the control volume interfaces lie inside the
cells of constant permeability. In addition, if we suppose flux and pressure continuity are
imposed locally at each cell face, then the interior cell face flux contributions will cancel
in the Gaussian integral over the net control volume. A brief summary of the dual variable
location scheme follows below; details are presented in [3, 7, 16].

The position vectorr = (x, y) assumes a cellwise bilinear variation, with each quadri-
lateral cell mapped to a unit cell. Since permeabilities are cellwise constant, evaluation of
transform derivatives at the respective cell centers leads to general tensorsT i+1/2, j+1/2 that
are also cellwise constant, and consequently the pressure can also assume a cellwise bilinear
variation with local derivatives
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8ξ̃ = (1− η̃)1ξ8i+1/2, j + η̃1ξ8i+1/2, j+1, 8η̃= (1− ξ̃ )1η8i, j+1/2+ ξ̃1η8i+1, j+1/2,

(4.4)

where8i, j is the discrete vertex pressure at(i, j )and 0≤ ξ̃ , η̃≤ 1 are the local cell transform
coordinates and1ξ8i+1/2, j =8i+1, j −8i, j ,1η8i, j+1/2=8i, j+1−8i, j .

The four discrete directional cell fluxes of Eq. (4.1) are derived by integrating Eq. (3.4)
between cell centers and edge midpoints corresponding to half cell intervals in the(ξ̃ , η̃)

coordinate system. For example the south fluxFS has an ˜η integration interval ofδÄC =
[0, 1/2]. Replacing(ξ̃ , η̃) in the integrands withprescribedconstant values(ξ̄ , η̄) yields a
family of symmetric positive definite schemes [3], with, e.g., south flux

FSi+1/2, j+1/2(8) = −
1

2

[
Taai+1/2, j+1/2((1− η̄)1ξ8i+1/2, j + η̄1ξ8i+1/2, j+1)

+ Tabi+1/2, j+1/2

(1η8i, j+1/2+1η8i+1, j+1/2)

2

]
, (4.5)

and the general tensor coefficients given by Eq. (3.5) are now piecewise constant over each
cell. A Galerkin scheme is obtained forξ̄ = η̄= 1/3. Further details and properties are given
in [3, 7, 16].

Algebraic Flux Continuity for Control-Volume Distributed Schemes

When rock and flow variables are chosen to be control volume distributed (i.e., point
distributed or cell centered; Fig. 2), the tensor permeability can be discontinuous across the
control volume faces and flux continuity must be enforced. A family of algebraically flux
continuous schemes for the two-dimensional full tensor equation Eq. (3.3) is defined in [4,
10] for either a point-distributed or cell-centered discretization and an equivalent scheme
is given independently, in [11–13]. In summary, four auxiliary continuous control volume
interface pressures(φN, φS, φE, φW) are introduced per cell, allowing pressure to vary
linearly over each subcell triangle (Fig. 2c). Piecewise constant fluxes are then calculated
with respect to each subcell triangular basis function, and the flux continuity constraints

−(Taa8ξ̃ + Tab8η̃)|1S=−(Taa8ξ̃ + Tab8η̃)|2S,
−(Taa8ξ̃ + Tab8η̃)|3N =−(Taa8ξ̃ + Tab8η̃)|4N,

(4.6)
−(Tab8ξ̃ + Tbb8η̃)|2E =−(Tab8ξ̃ + Tbb8η̃)|3E
−(Tab8ξ̃ + Tbb8η̃)|1W=−(Tab8ξ̃ + Tbb8η̃)|4W

define a linear system of equations for the four interface pressures in terms of the four
locally numbered cell vertex pressures(81,82,83,84), where8i, j =81 and0| jσ denotes
interface flux0 at quadrature locationσ and state at volumej . The actual position ofσ
along each cell edge defines the family [10]. Thus each cell face pressure can be expressed
as a linear combination of the cell vertex pressures and the four algebraically continuous
normal fluxes take the form

Fσ (8)=−1

2

4∑
L=1

βσL8L , σ = (N, S, E,W), (4.7)

whereσ indicates the local normal flux location. A full description of the schemes together
with the procedure for obtaining theβσL coefficients is given in [10].
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Consistent Flux Factorization

As in the case of dual location, each control volume face flux can also be expressed as a
linear combination of cell edge potential differences with

Fσ (8)=−1

2

(
ασ11ξ8i+1/2, j +ασ21η8i+1, j+1/2+ασ31η8i, j+1/2+ασ41ξ8i+1/2, j+1

)
,

(4.8)

where theασL coefficients are determined by equating the respective coefficients of the cell
vertex potentials in Eqs. (4.7) and (4.8), leading to

−1 0 −1 0
1 −1 0 0
0 1 0 1
0 0 1 −1



ασ1

ασ2

ασ3

ασ4

 =

βσ1

βσ2

βσ3

βσ4

. (4.9)

Upon summation of the equations of (4.9),

4∑
L=1

βσL = 0, (4.10)

which demonstrates that the system is linearly dependent due to the zero flux identity
which holds for constant potential. As a consequence theασL are only defined up to an
additive constant and therefore each normal flux can be written as a leading two-point flux
associated with the corresponding adjacent cell edge together with cross terms. For example,
with respect to edgei + 1/2, j and south flux (Fig. 2b), we can chooseαS

4 = 0 so that

FSi+1/2, j+1/2(8)=−
1

2

(
αS

11ξ8i+1/2, j +αS
21η8i+1, j+1/2+αS

31η8i, j+1/2
)
. (4.11)

In the case of a diagonal tensor with cell face midpoint quadrature [10] each directional
flux will reduce to the product of a coefficient (given by the harmonic mean of the local
leading directional canonical tensor coefficients, e.g.,Taa|S= 2Taa|1STaa|2S/(Taa|1S+ Taa|2S))
multiplying the local potential difference. Therefore consistency of flux in Eq. (4.11)
demands that for zero cross-flow gradient (i.e.,1η8i+1, j+1/2=1η8i, j+1/2= 0)αS

1 be equal
to the harmonic coefficient. The geometry metric components of tensorT can either be cal-
culated at each cell edge continuity point or be conveniently approximated by cell centered
values. The consistent factorization for the particular scheme and quadrature pointσ can
be deduced directly from the algebraic system; using Eq. (4.9) it follows that

αS
1 =−

(
βS

1 +βS
4

)
, (4.12)

which holds for any control volume geometry. By expressing the cross-flow coefficients as

αS
2 = (cS+wS)/2, αS

3 = (cS−wS)/2 (4.13)

using the identity1η1ξ8i+1/2, j+1/2=1ξ1η8i+1/2, j+1/2 and Eqs. (4.11), (4.13), the most
general form of a consistent flux atScan be expressed as

FSi+1/2, j+1/2(8)=−
1

2

(
αS

1 ((1−χS)1ξ8i+1/2, j +χS1ξ8i+1/2, j+1)

+ cS

2
(1η8i+1, j+1/2+1η8i, j+1/2)

)
, (4.14)



FLUX SPLIT FULL TENSOR DISCRETIZATION OPERATORS 9

whereχS=wS/2αS
1 . By flux consistency (and Eq. (4.13)),cS= (αS

2 +αS
3 ) represents a

directionally weighted mean approximation of the cross flow coefficientTab. Comparing
Eqs. (4.5) and (4.14) it follows that the normal fluxes of the two formulations have an
analogous discrete form, the difference being in the actual discrete approximation of the full
tensor coefficients, where the control volume distributed scheme coefficientsασj embody a
full tensor generalization of the harmonic mean defined via Eq. (4.6), while the dual variable
scheme has cellwise constant coefficients; cf. Eq. (4.5). A closely related formulation that
brings the above two formulations together in a locally homogenized sense is presented
in [16], and the relationship between the above two formulations is examined in [10] for
spatially constant coefficients.

Fully Implicit Coupled Formulation

A fully implicit formulation [1, 5, 6] is employed to solve Eq. (2.1), which is approximated
in the discrete locally conservative integral form (per phaseP) by(

sn+1
Pi, j
− sn

Pi, j

)
τi, j +1t

(
λP
(
sn+1

Pi+1/2, j

)
Fi+1/2, j (8

n+1)− λP
(
sn+1

Pi−1/2, j

)
Fi−1/2, j (8

n+1)

+ λP
(
sn+1

Pi, j+1/2

)
Fi, j+1/2(8

n+1)− λP
(
sn+1

Pi, j−1/2

)
Fi, j−1/2(8

n+1)
)=1t MPi, j , (4.15)

whereτi is the control volume andFi+1/2, j is defined by Eq. (4.2). The oil phase saturation
is eliminated via Eq. (2.2) and the system is solved simultaneously for(s1,8). The hy-
perbolic flux contribution is upwinded according to the local wave direction, e.g. based on
λP(s

n+1
Pi+1/2, j

)Fi+1/2, j (8
n+1) across control volume face(i + 1/2, j ) for a positive outward

wave with respect to face(i + 1/2, j ), sn+1
Pi+1/2, j

= sn+1
Pi, j

; otherwisesn+1
Pi+1/2, j

= sn+1
Pi+1, j

.

5. INCREASED SUPPORT AND LOSS OF M-MATRICES WITH FULL

TENSOR APPROXIMATION

The above full tensor schemes enlarge the discrete matrix from five to nine row entries in
2-D (3-D full tensors generally increase the support of the scheme from 7 to 19 or 27 entries
per row). In addition, a discretefull tensor matrix can lose diagonal dominance, as discussed
below. Without loss of generality of the method, we shall focus on the pressure equation
matrix in two dimensions and note that such a matrix arises directly within a sequentially
implicit, IMPES, or single-phase system.

M-Matrix

A matrix with entriesai, j is an M-matrix if

ai,i > 0, ∀ i

ai, j ≤ 0, ∀ i, j , i 6= j∑
j

ai, j ≥ 0, ∀ i
(5.1)

with strict inequality for at least one row and the matrix is irreducible [2, 24]. Referring
to the matrix of Eq. (A1.2) resulting from the dual variable scheme—cf. Eq. (4.5)—the
conditions of Eq. (5.1) can be shown to be satisfied [3, 10] if in each cell

min(Taa, Tbb)≥ η̄(Taa+ Tab)≥ |Tab| (5.2)
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and a Dirichlet boundary condition for pressure is applied at least at one point (ensuring
strict inequality for one row). In this case the approximation inherits a discrete maximum
principle. In addition it can be shown that Eq. (5.2) is precisely the condition for positive
transmissibility [22].

However, the inequality of Eq. (5.2) is a sufficient condition for ellipticity and only in-
cludes the subset of elliptic full tensors where the magnitude of the cross-flow coefficient
does not exceed the minimum diagonal tensor coefficient. Consequently nine-node approx-
imations of the full tensor equation cannot yield M-matrices for all ellipticfull tensors.
However, the additional cross terms involving ¯η in Eq. A1.2 serve to generate a family of
nine-point schemes, even for a diagonal tensor, that enhance diagonal dominance of a full
tensor scheme for any nonzero value of ¯η (thusχ ) above. Conversely if ¯η= 0 the inequality
of Eq. (5.2) is never satisfied foranyfull tensor.

Note that while the above approximations of the full tensor pressure equation are sym-
metric positive definite [3], they are also conditionally diagonally dominant, and when
coupled with the nonsymmetric diagonally dominant upwind approximation for the es-
sentially hyperbolic phase equations, the resulting enlarged block Jacobian bandwidth of
the fully implicit full tensor system Eq. (4.15) is neither symmetric positive definite nor
diagonally dominant, in contrast to the standard diagonal tensor fully implicit formulation,
which maintains a smaller Jacobian bandwidth with an underlying diagonal dominance.

6. OPERATOR SPLITTING AND SPLITTING AT THE MATRIX LEVEL

In this section and Section 7, strategies for designing full tensor schemes that only rely
on standard size matrix inversion (i.e., 5 row entries in 2-D, 7 in 3-D) are considered. The
strategies hinge upon calculation of the additional terms at the old time or iterate level. This
gives rise to the notion of a semi-implicit scheme, where “five-point” entries are implicit
and the remainder are explicit.

Let the fully implicit nine-point discretization matrix be denoted byA(9) and the discrete
solution by8h such that

A(9)8h=m. (6.1)

We shall illustrate schemes in two dimensions (the principle extends to three dimensions
directly) that involve decomposition of the matrixA(9) into a pentadiagonal matrixA(5) and
a residual matrixA(9−5) where

A(9)= A(5)+ A(9−5) (6.2)

and that give rise to semi-implicit schemes of the form

A(5)8n+1+ A(9−5)8n=m. (6.3)

Matrix Level Splitting

First we shall consider a scheme that is derived directly from splitting at the matrix level.
Such a splitting involves calculating all terms belonging to the standard pentadiagonal form
at time leveln+1; while the remaining entries are calculated at time leveln, the respective
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split matrices are denoted symbolically by

A(5) =


0 A(9)i, j+1 0

A(9)i−1, j A(9)i, j A(9)i+1, j

0 A(9)i, j−1 0

 , (6.4a)

A(9−5) = A(9) − A(5) =


A(9)i−1, j+1 0 A(9)i+1, j+1

0 0 0

A(9)i−1, j−1 0 A(9)i+1, j−1

 . (6.4b)

Stability of Matrix Splitting with Discrete Discontinuous Coefficients

If the condition of Eq. (5.2) holds for all cells, thenA(9)is an M-matrix and Eq. (6.4)
defines a regular splitting [24] of the matrix and thus the scheme of Eq. (6.3) is stable for
general discrete coefficients. Therefore whenA(9) is an M-matrix, the reduced matrixA(5)

defines a robust preconditioner for inverting the full bandwidth matrixA(9) via successive
iteration of Eq. (6.3 ) to convergence.

Loss of Discrete Stability

A corollary is that a nine-point diagonal tensor approximation enhances preconditioner
stability when a full tensor is present; cf. Section 5. Conversely, the scheme defined by
η̄ = 0 is unconditionally nondiagonally dominant for any full tensor since condition (5.2) is
violated andA(9) is not an M-matrix. The splitting for this case is illustrated in Appendix A2
for the dual variable scheme defined above where the following are shown:

(a) For variable coefficients, depending on the definition of the discrete operator, the
cross terms can add additional contributions to the standard five-point scheme coefficients
which can either enhance or destroy diagonal dominance of the resulting pentadiagonal
preconditioning matrix Eq. (6.4a), depending on the sign of the term in Eq. (A2.1). Thus
while matrix level splitting ensures that all terms which contribute to the pentadiagonal are
implicit, even the pentadiagonal matrixA(5) cannot be shown to be an M-matrix for general
discrete coefficients.

If Eq. (6.3) is not iterated to convergence at each time step, then irrespective of
whetherA(9) is an M-matrix,

(b) the corresponding flux is nonconservative (Appendix A2);
(c) an O(1) error is introduced in velocity (Appendix A2).

By splitting at the flux level it is shown in Section 7 that semi-implicit schemes can be
defined for evolutionary problems that avoid the additional iterations required by splitting
at the matrix level, while maintaining local conservation, consistency, and stability of the
formulation.

7. GENERAL SPLIT TENSOR FLUX

We shall now construct split schemes from the flux, since as shown above, loss of con-
servation and zero divergence will result from any semi-implicit matrix splitting that does
not respect these properties at the flux level.
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In Section 4 we demonstrated that all of the finite volume schemes presented, including
those designed to maintain algebraic flux continuity, have fluxes that can be cast in the form
of a leading two-point flux corresponding to the diagonal tensor component together with
cross-flow terms; cf. Eq. (4.11). This observation is exploited below.

The flux is now split so as to generate a semi-implicit scheme that retains an implicit
approximation of the diagonal tensor contribution and employs an explicit approximation
of all flux cross-flow terms, thereby retaining standard diagonal tensor Jacobian inversion,
and preserves existing simulator code design and efficiency. The splitting is illustrated for
the “south” flux atS (Figs. 1b and 2b) and is defined by

FS
Si+1/2, j+1/2

(8n+1,8n) = F2P
Si+1/2, j+1/2

(8n+1)+ FSi+1/2, j+1/2(8
n)− F2P

Si+1/2, j+1/2
(8n), (7.1)

where superscriptsS and 2P are used to denote the respective split flux and two-point
flux. From the above scheme formulations it follows that the leading two-point flux can be
expressed as

F2P
Si+1/2, j+1/2

(8n+1) = −1

2
αS

118
n+1
i+1/2, j , (7.2)

whereαS
1 is defined by Eq. (4.12) for a control volume distributed scheme, or for the

dual variable formulation, by analogy between Eqs. (4.5) and (4.14),aS
1 = Taai+1/2, j+1/2. The

general split flux defines a new semi-implicit formulation composed of the leading two-point
flux (Eq. (7.2)) approximated implicitly at the newn+ 1 time level, and a cross-flow flux

FSi+1/2, j+1/2(8
n)− F2P

Si+1/2, j+1/2
(8n) = αS

21η8
n
i+1, j+1/2+ αS

31η8
n
i, j+1/2, (7.3)

which is calculated explicitly at time leveln and by (4.14), (7.3) yields

−
[
αS

1

(−χS1ξ8
n
i+1/2, j + χS1ξ8

n
i+1/2, j+1

)
2

+ cS

(
1η8

n
i, j+1/2+1η8

n
i+1, j+1/2

)
4

]
.

(7.4)

Fully Coupled Semi-implicit Split Formulation

For mixed systems of equations such as Eq. (2.1), the semi-implicit flux can be formulated
for IMPES via deferred correction [7]. A sequentially implicit formulation is another pos-
sibility. Here we formulate the semi-implicit flux within a fully implicit formulation, which
leads to a fully coupled scheme that is fully implicit in saturation and fully implicit with
respect to diagonal tensor pressure terms and explicit with respect to cross-flow pressure
differences. The discrete scheme for each phaseP is now written as(
sn+1

Pi, j
− sn

Pi, j

)
τi, j +1t

(
λP
(
sn+1

Pi+1/2, j

)
FS

i+1/2, j (8
n+1,8n)− λP

(
sn+1

Pi−1/2, j

)
FS

i−1/2, j (8
n+1,8n)

+ λP
(
sn+1

Pi, j+1/2

)
FS

i, j+1/2(8
n+1,8n)− λP

(
sn+1

Pi, j−1/2

)
FS

i, j−1/2(8
n+1,8n)

) = 1t MPi, j (7.5)

and uses a spatially consistent split time level flux where, e.g.,

FS
i+1/2, j (8

n+1,8n) = FS
Ni+1/2, j−1/2

(8n+1,8n)+ FS
Si+1/2, j+1/2

(8n+1,8n), (7.6)
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and the “south” flux is given by Eq. (7.1) and the other local cell fluxes are defined in
an analogous fashion. As with the conventional fully implicit system of Eq. (4.15) the oil
saturation is eliminated and the block system is solved for(s1,8). Note that the upwind
split flux direction at(i + 1/2, j ) is now evaluated usingλ(sn+1

Pi+1/2, j
)FS

i+1/2, j (8
n+1,8n).

The new flux defined through Eq. (7.1) retains local conservation and for incompressible
flow a divergence-free velocity field is also maintained (as shown below). The full tensor
Jacobian band width is considerably reduced in size, from 9 to 5 row entries in 2-D, and
from 19 or even 27 to 7 row entries in 3-D. In addition to a compact standard shape diagonal
tensor Jacobian, an underlying diagonal dominance is recovered and thus the Jacobian to be
inverted is also better conditioned, while the actual diagonal tensor coefficients are defined
by consistent approximations toTaa, Tbb of Eq. (3.5).

Local Conservation, Consistency, and Stability

Discrete properties of the split flux scheme are best illustrated with respect to the pressure
equation. The split flux nine-point scheme leads to the matrix decomposition

A(9) = M (5) + X(9), (7.7)

and with respect to Eq. (6.1) the splitting can be expressed as

M (5)8n+1+ X(9)8n = m, (7.8)

where

M (5) =


0 M (5)

i, j+1 0

M (5)
i−1, j M (5)

i, j M (5)
i+1, j

0 M (5)
i, j−1 0

 (7.9)

is the net discrete diagonally dominant five-point operator matrix resulting from two-point
flux contributions, while the cross-flow matrixX(9) is defined by

X(9) = A(9) − M (5) =


X(9)

i−1, j+1 X(9)
i, j+1 X(9)

i+1, j+1

X(9)
i−1, j X(9)

i, j X(9)
i+1, j

X(9)
i−1, j−1 X(9)

i, j−1 X(9)
i+1, j−1

 . (7.10)

The above split formulation applies to both the control volume distributed and dual variable
formulations. The dual variable formulation matrix coefficients of the diagonally dominant
five-point operatorM (5) and the full tensor nine-point operatorA(9) are defined in Eqs. (A1.1)
and (A1.2), respectively; cf. Appendix A1.

For any quadrature point other than ¯η= 0, the cross-flow matrix will generally involve
nonzero entries for all nine nodes, while the M-matrix is unchanged. For spatially constant
coefficients with ¯η= 0 the splittings of Eqs. (6.4) and (7.8) produce identical matrix fac-
torizations for the pressure equation; however, even in this case there is still an important
distinction in the semi-implicit time-split flux.
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Locally Conservative Flux

Since the splitting is defined with respect to the flux, the same flux that is added to the
control volume integral at(i, j ) is subtracted from the control volume at(i + 1, j ), which
ensures local conservation, while the net discrete representation of divergence is defined by
Eq. (7.8).

Error Due to Flux Splitting

The relative flux error introduced by the split flux approximation is defined by the differ-
ence between the fully implicit flux and the split flux acting on the exact solution8(r, t).
For example, the relative error in flux normal to the control volume face atS (Fig. 2b) is
defined by subtracting the split flux of Eq. (7.1) from the flux of Eq. (4.14) to yield

FSi+1/2, j+1/2(8(r, t +1t))− FS
Si+1/2, j+1/2

(8(r, t +1t),8(r, t))

=−
[
αS

1 (−χS1ξδ8i+1/2, j + χS1ξδ8i+1/2, j+1)

2
+ cS(1ηδ8i, j+1/2+1ηδ8i+1, j+1/2)

4

]
,

(7.11)

whereδ8i, j =8(ri, j , t +1t)−8(ri, j , t). The discrete normal velocity error is defined by
dividing the flux error by the size of the control volume face1l . The leading error is due
to the off-diagonal tensor coefficient, and dividing Eq. (7.11) by1l and performing Taylor
series expansions aboutSat timet yields

VS(8(r, t +1t))− VS
S (8(r, t +1t),8(r, t))

=−cS

2

∂28

∂l∂t
1t − α

S
1χ

S

2

∂38

∂n∂l∂t
1n1t + O(1n2,1t2), (7.12)

which demonstrates that the split flux velocityVS is spatially consistent. The relative
divergence discretization error due to the flux splitting scheme is given by the difference
between the conventional and split discrete operators acting on the exact solution, viz.

A(9)8(r, t +1t)− M (5)8(r, t +1t)− X(9)8(r, t)

= X(9)(8(r, t +1t)−8(r, t)) = 1t X(9)18/1t; (7.13)

the leading divergence discretization error due to the time splitting of a full tensor scheme
is therefore

X(9)8t1t ≈ 21tTab8ξηt ≈ O(1t). (7.14)

Stability

An error equation for the relative discrete solution error can be derived by subtracting
Eq. (7.8) from Eq. (6.1) and using Eq. (7.7) to yield

M (5)en+1
h + X(9)en

h = 0, (7.15)
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where the relative discrete solution error is defined by

en
h = 8h −8n (7.16)

and is the difference between the discrete solution satisfying Eq. (6.1) and the evolutionary
solution defined via Eq. (7.8). Time stepping or iteration of the scheme of Eq. (7.8) is stable
provided that the spectral radius is bounded by unity, e.g., [25], which follows if∥∥(M (5)

)−1
X(9)

∥∥
µ
= ∥∥I − (M (5)

)−1
A(9)
∥∥
µ
≤ 1. (7.17)

If flux splitting is regular or weakly regular then (7.17) holds [24, 25]. In particular, ifA(9)

is diagonally dominant then the Jacobi iteration is stable with∥∥I − D−1A(9)
∥∥
∞ ≤ 1.

whereD is the diagonal ofA(9). Since(M5)−1 is a better approximate inverse thanD−1,
(7.17) (µ=∞) can be expected to hold ifA(9) is diagonally dominant. However, the schemes
presented here are conditionally diagonally dominant for ¯η>0; cf. Eq. (5.2).

Stability in L2

Here we consider the stability of the semi-implicit or iterative scheme of Eq. (7.8) in
the L2 norm and perform a von Neumann analysis for the case of constant coefficients. In
this case both the dual variable and flux continuous schemes can be reduced to the same
discrete form [10]—cf. Eq. (A1.2)—with constant coefficients. Thus the split flux operators
are defined by

M (5)8n+1 = −Taa
(
8n+1

i+1, j − 28n+1
i, j +8n+1

i−1, j

)− Tbb
(
8n+1

i, j+1− 28n+1
i, j +8n+1

i, j−1

)
X(9)8n = Tab

(
8n

i+1, j+1−8n
i−1, j+1−

(
8n

i+1, j−1−8n
i−1, j−1

))/
2

(7.18)
+ T̄

(
48n

i, j − 2
(
8n

i+1, j +8n
i−1, j +8n

i, j+1+8n
i, j−1

)
+8n

i+1, j+1+8n
i−1, j+1+8n

i+1, j−1+8n
i−1, j−1

)
,

whereT̄ = η̄(Taa+ Tbb)/2 and the error equation Eq. (7.15) is rewritten as

M (5)er+1
h = −X(9)er

h. (7.19)

Expanding the local error as a Fourier series with componentλr ei (k1ξ+k2η), wherek1= 2πK1,
k2= 2πK2, andK1, K2 are the respective (ξ, η) transform space wave numbers, substitution
in Eq. (7.18) yields

M (5)er+1
h = −2λr+1ei (k1ξ+k2η)(Taa(cos(k1h)− 1)+ Tbb(cos(k2h)− 1))

(7.20)
X(9)er

h = −λr ei (k1ξ+k2η)(2Tab sin(k1h) sin(k2h)− 4T̄(cos(k1h)− 1)(cos(k2h)− 1))

and stability follows if |λr+1/λr | ≤1. After substitution of Eq. (7.20) in Eq. (7.19) the
stability condition—cf. Eq. (7.17)—is satisfied if∣∣∣∣Tab sin(k1h) sin(k2h)+ 2T̄(cos(k1h)− 1)(cos(k2h)− 1)

(Taa(cos(k1h)− 1)+ Tbb(cos(k2h)− 1))

∣∣∣∣ ≤ 1. (7.21)
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Expanding in terms of half angles (whereθ1= k1h/2, θ2= k2h/2) and rearranging, the
inequalities resulting from Eq. (7.21) are certainly satisfied if

Taa tan2(θ1)+ Tbb tan2(θ2)± 2|Tab| tan(θ1) tan(θ2)

+ ((Taa+ Tbb)± 4T̄) tan2(θ1) tan2(θ2) ≥ 0 (7.22)

and since ¯η<1/2 the coefficient of tan2(θ1) tan2(θ2) is non-negative. Thus omitting the latter
term, the inequality of Eq. (7.22) is still satisfied provided that the quadratic discriminent
is zero or negative, which requires thatT2

ab≤ TaaTbb. Therefore the family of split schemes
is unconditionally stable for constant elliptic coefficients.

Semi-implicit Time Marching or Iteration in Summary

For a standalone pressure equation Eq. (7.8) defines an iteration strategy withM (5)

acting as an approximate inverse or preconditioner. IfA(9) is an M-matrix and iteration to
convergence is performed then either the preconditioner resulting from matrix splitting or
flux splitting can be employed. For a time-dependent system such as an IMPES formulation,
then as in [7], Eq. (7.8) can either be similarly iterated to a prescribed convergence tolerance
per time step or be used directly as a split operator to update the system at each time step.
Note all approaches are driven by a reduced bandwidth matrix.

However, since the above analysis has shown that the semi-implicit scheme is conservative
and consistent (introducing an errorO(1t)), and stability is proven for constant coefficients,
the semi-implicit split flux scheme can be expected to produce the most efficient method for
any formulation, effectively replacing inversion of a conditionally diagonally dominant nine-
point matrix by inversion of a symmetric positive definite classical five-point M-matrix (27
by seven-point matrix operator in 3-D), and if stability problems are encountered additional
iterations can still be performed.

In this work the focal point is a fully implicit formulation; the semi-implicit operator
has been incorporated into a standard fully implicit diagonal tensor formulation, extending,
applicability to full tensors while retaining the same large time step capability and only
requiring inversion of a standard 5-pointblockJacobian rather than the much larger block
bandwidth nondiagonally dominant Jacobian matrix resulting from a conventional fully
implicit full tensor formulation.

8. SPLIT TENSOR FLUX ON AN UNSTRUCTURED GRID

Flux splitting can also be applied to triangular grids. While the flux split Jacobian is
not reduced in size for pure triangulations, diagonal dominance is recovered due to the
split time level approximation of pressure in the flux divergence operator. Once formulated
for both quadrilateral and triangular cells the method can be applied to any unstructured
grid type. Here the extension to triangular grids is outlined below. As before, focus is on
cell vertex-based schemes, and both the dual variable and point-distributed schemes are
considered.

Dual Variable

Assuming permeability is piecewise constant over each triangle (Fig. 3a), pressure can
assume a linear variation over each triangle with
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FIG. 3. Dual variable and control volume distributed schemes, fluxes for unstructured triangular grid.
(a) Constant tensor per cell dual variable location. (b) Constant tensor per control volume, control volume dis-
tributed. Dashed line is a control volume face.

8 = 81+ ξ(82−81)+ η(83−81) (8.1)

and for example by Eq. (3.5), the outward normal flux approximation to the control volume
face at(S) of Fig. 3a can be written as

FS(8) = −(Taa(82−81)+ Tab(83−81)). (8.2)

Point-Distributed

For the point-distributed scheme, pressure is vertex based and permeability is now piece-
wise constant over each control volume (Fig. 3b) and flux continuity must be enforced as
before; cf. Eq. (4.6). In this case auxiliary pointwise continuous control volume face pres-
sures are introduced atS, N, E, as indicated in Fig. 3b; cf. [6]. By analogy with Eq. (4.6),
pressure can now assume a linear variation over the resulting subcell triangles, and nor-
mally resolved piecewise constant fluxes can be calculated at each control volume face. If
we adopt notation analogous to that of Eq. (4.6), the flux continuity conditions atS, N, E
lead to three equations for the unknown interface pressures,

−(Taa8ξ̃ + Tab8η̃)|1S = −(Taa8ξ̃ + Tab8η̃)|2S
−(Tab8ξ̃ + Tbb8η̃)|2E = −(Tab8ξ̃ + Tbb8η̃)|3E (8.3)

−(Tab8ξ̃ + Tbb8η̃)|1N = −(Taa8ξ̃ + Tab8η̃)|3N,

enabling them to be expressed as a linear combination of the cell vertex pressures belonging
to the triangle. Therefore each normal flux can then be expressed as

Fσ (8) = −1

2

3∑
L=1

βσL8L , σ = (S, N, E),

and as before (Eq. (4.10)), for a constant potential there is zero flux, thus
∑3

L=1β
σ
L = 0,

from which it follows that general form of the normal flux is

FS(8) = −
(
αS

1 (82−81)+ αS
2 (83−81)

)
, (8.4)

where the coefficients ensure algebraic continuity; cf. Eq. (8.3). By consistency of normal
flux, the coefficientα1 will reduce to the harmonic mean of the local leading canonical
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tensor coefficients with respect to the triangle control volume face, andα2 is a directionally
weighted average approximation of the cross-flow coefficient.

Thus as in the case of quadrilateral cells, each local control-volume normal flux can be
expressed as the sum of a leading two-point flux (with coefficientα1 above) together with a
cross term. Therefore the split flux definition of Eq. (7.1) can be applied to both triangular
formulations, and the resulting normal split flux at locationS takes the form

FS
S (8

n+1,8n) = −(αS
1

(
8n+1

2 −8n+1
1

)+ αS
2

(
8n

3 −8n
1

))
. (8.5)

Finally the unstructured semi-implicit multiphase flow scheme can now be defined by

(
sn+1

Pi
− sn

Pi

)
τi +1t

Nedge∑
k=1

λP
(
sn+1

Pe(k,i )

)
FS

e(k,i )(8
n+1,8n) = 1t MPi ,

where summation is over all edgese(k, i ) passing through thei th grid vertex, the net
edge-based flux is composed of adjacent triangle and/or quadrilateral cell edge split fluxes
according to each local grid cell type. As before, cell edge saturations are upwinded, the
direction being a function of the local edge split flux.

9. RESULTS

The new full tensor split flux semi-implicit formulation is compared with the standard
fully implicit diagonal and full tensor formulations. The water saturation field results are
illustrated by contour plots ranging over 10 intervals and are displayed at time 0.5 pore
volumes injected and no flow is assumed at all boundaries unless stated otherwise.

All solutions are computed with the semi-implicit split flux scheme, and generally large
time steps are taken (average CFL of 12) while overall computation time is reduced when
compared to a fully implicit full tensor formulation with a conventional full Jacobian
inversion.

Case 1: Non-orthogonal Grid

In order to demonstrate grid effects, a nonorthogonal quadrilateral grid is employed for
simulation of flow in a homogeneous isotropic reservoir, the grid is shown in Fig. 4a. An
injector and producer are placed at the bottom left and top right hand corners of a square
domain (quarter five-spot pattern). Nonorthogonality introduces a full tensor (cf. Eq. (3.5)).
Standard simulators only allow diagonal tensor coefficients and include geometry effects
by modifying these coefficients (called transmissibility modifiers, and multiply porosity by
cell volume). The saturation field computed by a standard implicit scheme with diagonal
tensor (corner-point) geometry, employing transmissibility modifiers, is shown in Fig. 4b.
The reference solution, computed on a uniform 25× 25 Cartesian grid, is shown in Fig. 4c
and is symmetric abouty= x. There is a large discrepancy between the results; due to the
O(1) error in flux that is incurred when using the diagonal tensor on a nonorthogonal grid,
the diagonal tensor approximation introduces a form of local grid orientation that causes the
front to follow the curvature of the grid and leads to early breakthrough at the producing well.
In contrast, the results from the full tensor schemes, using full matrix inversion (Fig. 4d) and
using the split tensor operator (Fig. 4e), are in excellent agreement and compare favorably
with the uniform grid result, demonstrating the need for a full tensor. The split flux operator
reduces the difference in computation time between the full tensor (full matrix inverse) and
diagonal tensor simulations by 60% for this case.
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FIG. 4. Saturation contours and non-orthogonal grid. (a) Nonorthogonal grid. (b) Standard diagonal tensor
saturation field on nonorthogonal grid. (c) Diagonal tensor saturation field on Cartesian grid. (d) Full tensor–full
matrix saturation field. (e) Full tensor–split flux saturation field.

Case 2: Homogeneous Full Tensor

The second case involves an anisotropic diagonal homogeneous tensor with principal
axes oriented at 45◦ to the reservoir domain. The dominant principal permeability direction
is parallel toy= x, creating a full tensor with respect to the 30× 30 Cartesian grid. The
normalized full tensor has componentsKaa= 1, Kbb= 1, Kab= 0.82. Quarter five-spot
boundary conditions are imposed as in Case 1. The results for this case are shown at
time 0.4pv. The standard diagonal tensor simulation omits cross terms and the saturation
contours are shown in Fig. 5a. In contrast, the effect of the full tensor is shown in Fig 5b, the
strong cross flow effect due to the dominant permeability that is parallel to the primary flow
gradient is apparent from the elongated saturation front. Both of the full tensor schemes,
using full matrix inversion (Fig. 5b) and using the split tensor operator (Fig. 5c), are again
in excellent agreement, and the split scheme reduces the additional time required for full
tensor simulation with full matrix inversion by nearly 86%.

A similar observation and saving is obtained for a principal axes orientation at−45◦ to
the reservoir domain, where now the primary flow gradient is orthogonal to the dominant
permeability direction, causing a flattening of the front. Both of the full tensor schemes,
using full matrix inversion (Fig. 5d), and using the split tensor operator (Fig. 5e), again
sustain excellent agreement.

Case 3: Heterogeneous Cross Bed

This case involves an anisotropic heterogeneous domain with a 30% correlation length
along the horizontal principal axis (Fig. 6a) and average anisotropy ratio of 10. The principal
axes are oriented at 45◦ to the reservoir domain, and the dominant principal permeability di-
rection is tangential toy= x, producing a heterogeneous full tensor permeability field with
respect to the 30× 30 Cartesian grid. Fluid is injected along the entire left-hand boundary
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FIG. 5. Saturation contours for homogeneous full tensors. (a) Diagonal tensor coefficient saturation field.
(b) Full tensor-full matrix. (c) Full tensor-split flux. (b, c) Principal axes max diagonal aligned with flow gradient.
(d) Full tensor-full matrix. (e) Full tensor-split flux. (d, e) Principal axes max diagonal orthogonal to flow gradient.

FIG. 6. Saturation contours and heterogeneous full tensor. (a) Permeability field. (b) Diagonal tensor coeffi-
cient saturation field. (c) Full tensor–full matrix saturation field. (d) Full tensor–split flux saturation field.
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and produced at the right-hand boundary. Full tensor scheme results computed with full ma-
trix inversion and using the split tensor operator are shown in Figs. 6c and 6d, respectively,
and are in excellent agreement. The full tensor cross bed induces angled channeling of the
front, demonstrating the influence of the underlying dominant principal tensor coefficient.
The standard simulator diagonal tensor result (Fig. 6b) shows a completely different be-
havior, with channeling that is parallel to the horizontal and later breakthrough of the front
at the completed producing well. This result further illustrates the effect of the O(1) error
in flux incurred by commercial simulators when neglecting critical off-diagonal terms of
the tensor (cf. Eq. (3.5)). The split tensor scheme reduces the additional computation time
required by full tensor simulation by 45% for this case.

Case 4: Unstructured Grid, Cross Bed

This case also involves an anisotropic heterogeneous domain, with dominant principal
direction parallel toy= x and oriented at 45◦ relative to the grid, creating a cross-bedded
region with a full heterogeneous tensor. Quarter five-spot boundary conditions are imposed
as in Case 1. The grid is defined by an unstructured Delaunay triangulation of the domain,
and a permeability tensor is assigned to each cell vertex control volume, i.e., point distributed
(Fig. 7a). Results from the full tensor schemes computed with full matrix inversion and the
split tensor operator are shown in Figs. 7c and 7d, respectively, and are in very good
agreement. A comparison with the diagonal tensor result of Fig. 7b shows the strong effect
of the cross flow induced by the dominant principal permeability direction, parallel toy= x.
In this case the domain is entirely triangulated and is a worst case for the method since the

FIG. 7. Saturation contours, heterogeneous full tensor, and unstructured grid. (a) Permeability field and
unstructured control volumes. (b) Diagonal tensor coefficient saturation field. (c) Full tensor–full matrix saturation
field. (d) Full tensor–split flux saturation field.
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FIG. 8. Saturation contours and mixed cell unstructured grid. (a) Unstructured quadrilateral–triangular grid.
(b) Diagonal tensor coefficient saturation field. (c) Full tensor–full matrix saturation field. (d) Full tensor–split
flux saturation field.

split Jacobian is not reduced in size. However, improvement in efficiency is still obtained,
with a reduction in additional full tensor computation time of 48%, which is attributed to
the inherent diagonal dominance due to the split flux.

Case 5: Unstructured Quadrilateral Triangular Grid

The benefit of the completely general mixed cell scheme is illustrated by this example.
The grid shown in Fig. 8a is composed of two quadrilateral domains 21× 13 and 11× 13
joined by a triangular interface, and is representative of local refinement, or a faulted region.
The constant homogeneous full tensor of Case 2 is imposed on the domain and the problem
is identical to Case 2 except for the use of an unstructured curvilinear grid instead of the
Cartesian grid, which gives rise to an additional source of a full tensor.

Results are compared at the same output time as Case 2. The two-point flux scheme
generates a highly distorted solution (Fig. 8b), due to the O(1) error in flux caused by
neglecting the strong cross-flow terms. In addition to the generally incorrect shock front,
the additional sensitivity due to the change in mesh type from quadrilateral to triangular is
also clear in the solution.

In contrast, the results from the full tensor schemes, using full matrix inversion (Fig. 8c),
and using the split tensor operator (Fig. 8d), are in excellent agreement and compare favor-
ably with the uniform grid result of Figs. 5b and 5c, and show that the split operator can
handle mixed element grids. The split flux operator reduces the difference in computation
time between the full tensor (full matrix inverse) and diagonal tensor simulations by 87%
for this case.
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FIG. 9. Relative error convergence of saturation and pressure with decreasing time step. (a) L2 convergence
of potential with decreasing time step. (b) L1 convergence of saturation with decreasing time step.

Relative Convergence

The full tensor discretization schemes employed here have been shown to provide con-
vergent results under mesh refinement studies for problems with discontinuous coefficients
[10]. The split flux scheme has been shown (cf. Section 7) to have a discretization error of
O(1t) relative to a fully implicit full tensor flux. Results of a convergence study of relative
error between the fully implicit scheme and the split scheme are presented in Fig. 9. The
solutions for Case 2 above are recomputed (four times) by both schemes, the maximum
time step is halved for each successive computation, and the differences in the conventional
and split flux pressure and saturation fields are computed in theL2 andL1 norms, respec-
tively. The charts of Fig. 9 indicate that the convergence rates are approximatelyO(1t),
confirming the estimate of Eqs. (7.12) and (7.14), and that the split flux scheme is therefore
consistent and convergent.

10. CONCLUSIONS

A time split full tensor flux operator is developed and incorporated into a standard fully
implicit diagonal tensor formulation, extending applicability to full tensors on structured
and unstructured grids.

Two full tensor finite volume formulations are considered: dual variable and (flux con-
tinuous) point-distributed. A relationship is established between the discrete forms in a
locally homogenized sense, and it is shown that the directional (normal) flux of both for-
mulations can be written as a leading two-point flux together with terms that approximate
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FIG. 10. Computation time: performance relative to fully implicit diagonal tensor simulation.

cross flow. This observation enables a general definition of split flux to be applied to both
formulations.

The resulting time split full tensor flux operators enable any diagonal tensor formulation
(from single phase to fully implicit) to be extended to a full tensor formulation while
retaining diagonal tensor Jacobian inversion at each time step.

While operator splitting can also be defined at the matrix level, it is shown that when
implemented as a semi-implicit scheme, flux splitting retains important discrete properties
including local conservation and convergence that are lost by matrix splitting. It is shown
that flux splitting is consistent and has a relative error ofO(1t), which is confirmed by a
convergence study (Fig. 10). The benefits of split tensor operators for multiphase flow are
as follows:

(a) A spatially consistent full tensor flux is obtained while only requiring inversion
of a diagonal tensor Jacobian, thus reducing computational requirements. For quadrilateral
grids matrix entries reduce from nine to five per row in two dimensions.

(b) In addition to considerably reducing the size of the full tensor Jacobian bandwidth
for quadrilateral grids, flux splitting ensures that the underlying diagonal dominance is
recovered within the implicit operator block Jacobian for any formulation, on both structured
and unstructured grids, in contrast to implicit full tensor Jacobian matrices, which have much
larger bandwidths and are at best conditionally diagonally dominant.

(c) The pressure matrix to be inverted in the case of IMPES, sequentially implicit, and
single-phase flow formulations is always a symmetric positive definite M-matrix for both
structured and unstructured grids.

(d) Implementation of full tensor operators is simplified with all standard diagonal ten-
sor Jacobian assembly remaining unchanged and entirely cell edge based for both structured
and unstructured grids. Parallel Jacobian issues are also simplified.

(e) The split flux operator method produces results comparable to those of full matrix
inversion, and both methods remove the O(1) error in flux that is introduced by the standard
diagonal tensor formulation commonly employed in many existing simulators.

(f ) The split operator method reduces the difference in computation time between
full and diagonal tensorfully implicit simulations, usually by over 50% for cases tested,
while retaining large (high CFL) time steps that are typical of fully implicit simula-
tion.
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(g) A Fourier stability analysis demonstrates unconditional stability of the semi-
implicit family of schemes for a spatially constant elliptic full tensor.

(h) In 3-D much greater Jacobian reduction is obtained, for brick cells (19 to 7 or even
27 to 7) and further gains in efficiency are anticipated.

(i) The method is readily applicable to analogous mixed systems of partial differential
equations such as the incompressible Euler and Navier–Stokes equations which also involve
solving a pressure equation.

APPENDIX A1: MATRIX ENTRIES

The respective dual variable reduced five node M-matrix entries are given by

M (5)
i+1, j = −

(
Taai+1/2, j+1/2 + Taai+1/2, j−1/2

)/
2,

M (5)
i−1, j = −

(
Taai−1/2, j+1/2 + Taai−1/2, j−1/2

)/
2

M (5)
i, j+1 = −

(
Tbbi+1/2, j+1/2 + Tbbi−1/2, j+1/2

)/
2, (A1.1)

M (5)
i, j−1 = −

(
Tbbi+1/2, j−1/2 + Tbbi−1/2, j−1/2

)/
2

M (5)
i, j = −

(
M (5)

i+1, j + M (5)
i−1, j + M (5)

i, j+1+ M (5)
i, j−1

)
and the corresponding nine-node matrix is given by

A(9)i+1, j+1 = −Tabi+1/2, j+1/2

/
2− η

2

(
Taai−1/2, j+1/2 + Tbbi+1/2, j+1/2

)
A(9)i−1, j−1 = −Tabi−1/2, j−1/2

/
2− η

2

(
Taai−1/2, j−1/2 + Tbbi−1/2, j−1/2

)
(A1.2a)

A(9)i−1, j+1 = Tabi−1/2, j+1/2

/
2− η

2

(
Taai−1/2, j+1/2 + Tbbi−1/2, j+1/2

)
A(9)i+1, j−1 = Tabi+1/2, j−1/2

/
2− η

2

(
Taai+1/2, j−1/2 + Tbbi+1/2, j−1/2

)
,

A(9)i+1, j = M (5)
i+1, j +

η

2

(
Taai+1/2, j+1/2 + Tbbi+1/2, j+1/2 + Taai+1/2, j−1/2 + Tbbi+1/2, j−1/2

)
A(9)i−1, j = M (5)

i−1, j +
η

2

(
Taai−1/2, j+1/2 + Tbbi−1/2, j+1/2 + Taai−1/2, j−1/2 + Tbbi−1/2, j−1/2

)
(A1.2b)

A(9)i, j+1 = M (5)
i, j+1+

η

2

(
Taai+1/2, j+1/2 + Tbbi+1/2, j+1/2 + Taai−1/2, j+1/2 + Tbbi−1/2, j+1/2

)
A(9)i, j−1 = M (5)

i, j−1+
η

2

(
Taai+1/2, j−1/2 + Tbbi+1/2, j−1/2 + Taai−1/2, j−1/2 + Tbbi−1/2, j−1/2

)
,

and

A(9)i, j = M (5)
i, j +

1

2

(−Tabi+1/2, j+1/2 − Tabi−1/2, j−1/2 + Tabi−1/2, j+1/2 + Tabi+1/2, j−1/2

)
− η

2

(
Taai+1/2, j+1/2 + Tbbi+1/2, j+1/2 + Taai+1/2, j−1/2 + Tbbi+1/2, j−1/2

+ Taai−1/2, j+1/2 + Tbbi−1/2, j+1/2 + Taai−1/2, j−1/2 + Tbbi−1/2, j−1/2

)
. (A1.2c)
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APPENDIX A2: MATRIX LEVEL SPLITTING

Loss of the Pentadiagonal M-Matrix

The splitting is illustrated for the simplest member scheme defined above with ¯η= 0. As
can be seen from Eq. (A1.2), depending on the definition of the discrete operator, the cross
terms can add additional contributions to the original five-point scheme coefficients. In this
case for variable coefficients such that(−Tabi+1/2, j+1/2 − Tabi−1/2, j−1/2 + Tabi−1/2, j+1/2 + Tabi+1/2, j−1/2

) 6= 0 (A2.1)

an additional term is added to the diagonal, which can either enhance or destroy diagonal
dominance of the resulting pentadiagonal matrix (Eq. (6.4a)) depending on the sign of the
term in Eq. (A2.1). Thus while matrix level splitting ensures that all terms which contribute
to the pentadiagonal are implicit, in general an M-matrix is not obtained.

Loss of Conservation Due to Matrix Splitting

The flux that is consistent with the above matrix splitting rule of Section 6 involves an
implicit calculation of all terms that contribute to the five-point stencil at time leveln+ 1,
while other terms (cf. Eq. (6.4b)) are calculated explicitly at time leveln. Again using the
dual variable scheme for illustration, the matrix level splitting leads to the fluxF

_

at control
volume faceSof Fig. 2b, given by

F
_

S(8
n+1,8n) = −

⌊
Taai+1/2, j+1/2

(
(1− η̄)(8n+1

i+1, j −8n+1
i, j

)+ η̄(8n
i+1, j+1−8n+1

i, j

))
+ Tabi+1/2, j+1/2

((
8n+1

i, j+1−8n+1
i, j

)+ (8n
i+1, j+1−8n+1

i+1, j

))
2

]
1

2
. (A2.2)

However, by the same rule, for the equation ati + 1, j , the flux corresponding to the same
control-volume face 2 that is subtracted from thei + 1, j equation must take the form

F
_

S(8
n+1,8n) = −

⌊
Taai+1/2, j+1/2

(
(1− η̄)(8n+1

i+1, j −8n+1
i, j

)+ η̄(8n+1
i+1, j+1−8n

i, j

))
+ Tabi+1/2, j+1/2

((
8n

i, j+1−8n+1
i, j

)+ (8n+1
i+1, j+1−8n+1

i+1, j

))
2

]
1

2
. (A2.3)

and the net sum of outward normal fluxes with respect toi, j forms the discrete split
approximation of divergence defined by Eq. (6.3). However, it is clear that the fluxes of
Eqs. (A2.2) and (A2.3) are unequal due to the differences in time level of the cross-flow
contributions, and consequently local conservation is lost.

Error Due to Matrix Splitting

The leading error introduced in the normal flux by directly splitting the matrix is defined
by subtracting the flux of Eq. (A2.2) from the flux of Eq. (4.14) withFS(8

n+1) to yield

FS(8
n+1)− F

_

S(8
n+1,8n) = −Tabi+1/2, j+1/2

δ8i+1, j+1

4
, (A2.4)
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whereδ8i, j =8n+1
i, j −8n

i, j . The discrete normal velocity error is defined as before, dividing
the flux error by the size of the control volume face1l . The leading error is due to the
off-diagonal tensor coefficient, and upon substitution of the exact solution in Eq. (A2.4),
dividing by1l and performing Taylor series expansions aboutSat timet

VS(8(r, t +1t))− V
_

S(8(r, t +1t),8(t)) = −Tabi+1/2, j+1/2

∂8

4∂t

1t

1l
≈ O(1). (A2.5)

Therefore the semi-implicit velocity field will have an O(1) error. While for spatially cons-
tant coefficients the net error will cancel with respect to the divergence—cf. Eq. (6.3)—for
multiphase flow, even this error will appear in the discrete local conservation law fluxes for
the saturation equations.
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